

HTC 1750 S/0 PC.225

CONCRETE CASTING BURNER CONE

HTC 1750 S/0 PC - MV Ø225

Maximum output [kW]			
Fuel pressure at maximum capacity [mbar] (measured at P _{1.F} - pag. 2)	Natural gas (8250 kcal/Nm³)	20	
	LPG (22500 kcal/Nm³)		
Air pressure at maximum capacity [mbar] (measured at P _{1,A} - pag. 2)	Natural gas (8250 kcal/Nm³)	40	
	LPG (22500 kcal/Nm³)		
	Natural gas (8250 kcal/Nm³)	1800	
Flame length at maximum capacity [mm] (measured from the end of the burner body)	LPG (22500 kcal/Nm³)		
Flame speed at maximum capacity [m/s] (with 20% excess of air)	Medium speed	75	
Flame detection	Ionization flame detection electrode or UV cell		
Fuel	Natural gas, LPG		

All information is based on laboratory tests in a neutral pressure chamber. Different conditions and chamber sizes can affect the data. All information is based on a standard combustor design. Modifications to the combustor will alter performance and pressures.

All data are based on gross calorific values.

All information is based on tests conducted on generally acceptable air and gas piping systems.

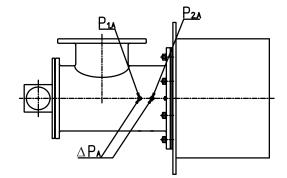
Data reported in this technical sheet are subject to change without notice.

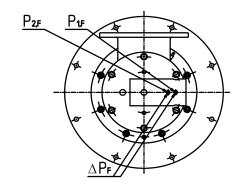
Performance data and dimensions are guidelines only and are not binding.

ELCO reserves the right to modify the construction and / or configuration of its products at any time

CHARACTERISTICS OF THE BURNER

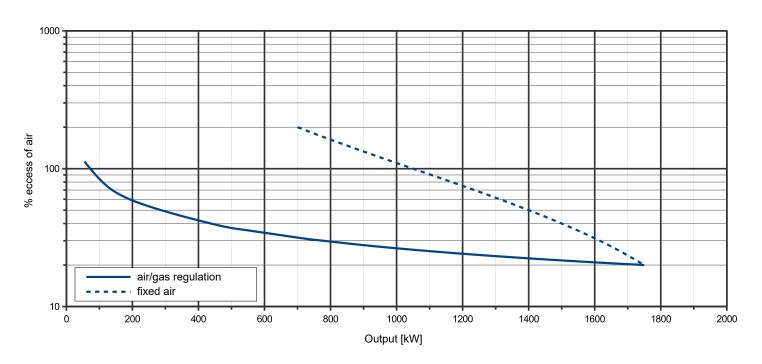
Fuel 1: CH4


Fuel 1 diaphragm: Ø42


Fuel 2: LPG

Fuel 2 diaphragm: Ø26

Comburent: Air Comburent diap.: Ø170


Cone: Ø225

OPERATING RANGE

TYPICAL OPERATING RANGE

 $\begin{array}{ll} \textbf{LEGENDA} \\ \textbf{Q}_{\text{F}} & \text{Fuel flow} \end{array}$

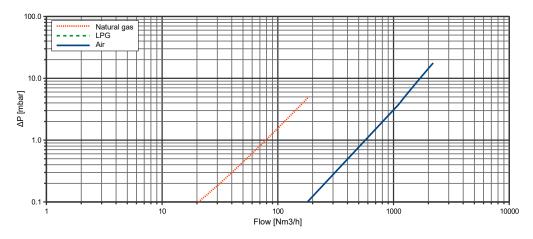
 \mathbf{Q}_{A} Air flow

 ${f P}_{1.F}$ Fuel pressure upstream the diaphragm

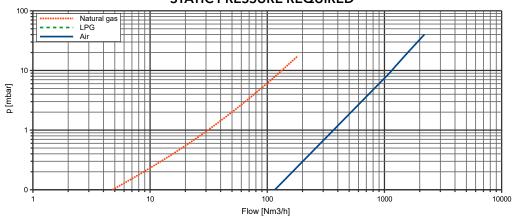
P_{1.A} Air pressure upstream the diaphragm

P_{2.F} Fuel pressure downstream the diaphragm

 $P_{2.A}$ Air pressure downstream the diaphragm

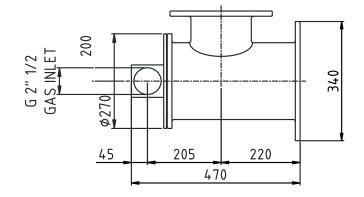

 ΔP_F Differential fuel pressure between ports 1 and 2

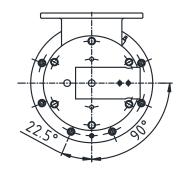
 ΔP_A Differential air pressure between ports 1 and 2

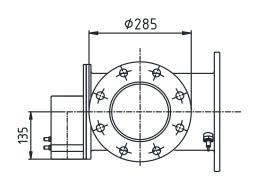

FLOW RATE CURVES

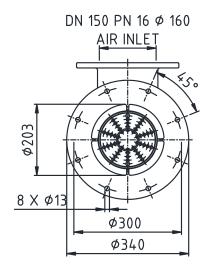
	FUEL					
Q _F [Nm³/h]	P _{1.F} [mbar]		ΔP_F [mbar]			
	Natural gas	LPG	Natural gas	LPG		
4	0.08		0.01			
8	0.18		0.03			
16	0.41		0.07			
24	0.70		0.13			
32	1.04		0.20			
40	1.43		0.30			
48	1.88		0.41			
56	2.39		0.54			
64	2.94		0.69			
72	3.56		0.85			
80	4.22		1.03			
88	4.94		1.23			
96	5.72		1.44			
104	6.54		1.68			
112	7.43		1.93			
120	8.36		2.20			
128	9.35		2.48			
136	10.40		2.78			
144	11.50		3.10			
152	12.65		3.44			
160	13.86		3.79			
168	15.12		4.16			
176	16.44		4.55			
182	17.46		4.86			

AIR				
Q _A [Nm³/h]	P _{1.A}	ΔP_A		
	[mbar]	[mbar]		
50	0.02	0.01		
100	0.07	0.03		
200	0.30	0.12		
300	0.67	0.28		
400	1.19	0.49		
500	1.85	0.77		
600	2.67	1.11		
700	3.63	1.51		
800	4.74	1.97		
900	6.00	2.49		
1000	7.41	3.08		
1100	8.97	3.72		
1200	10.89	4.57		
1300	13.01	5.50		
1400	15.30	6.51		
1500	17.79	7.61		
1600	20.46	8.79		
1700	23.31	10.06		
1800	26.35	11.41		
1900	29.57	12.85		
2000	32.98	14.37		
2100	36.57	15.98		
2150	38.44	16.81		
2200	40.35	17.67		

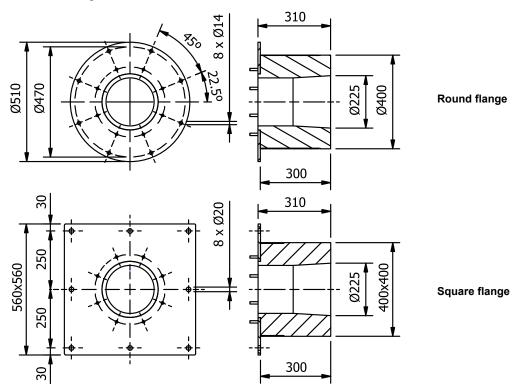








DIMENSIONS [mm]



Concrete casting cone:

