

HTS 220 S/90.65 SILICON CARBIDE BURNER CONE

HTS 220 S/90 - HV Ø65

69	
105	
700	
700	
110	
Ionization flame detection electrode or UV cell	
n request)	

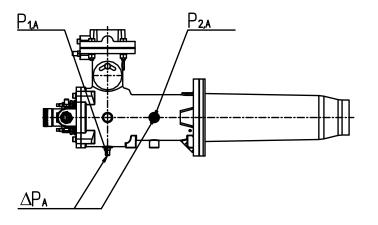
All information is based on laboratory tests in a neutral pressure chamber. Different conditions and chamber sizes can affect the data. All information is based on a standard combustor design. Modifications to the combustor will alter performance and pressures. All data are based on gross calorific values.

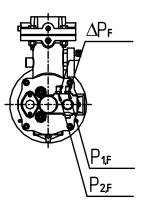
All information is based on tests conducted on generally acceptable air and gas piping systems.

Data reported in this technical sheet are subject to change without notice.

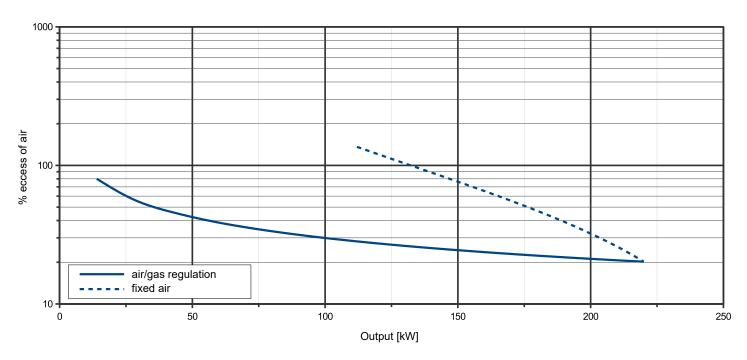
Performance data and dimensions are guidelines only and are not binding.

ELCO reserves the right to modify the construction and / or configuration of its products at any time


CHARACTERISTICS OF THE BURNER


Fuel 1: CH4 Fuel 1 diaphragm: Ø13

Fuel 2: LPG Fuel 2 diaphragm: Ø10


Comburent: Air Comburent diap.: Ø78

Cone: Ø65

OPERATING RANGE

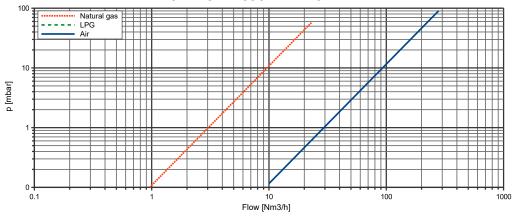
TYPICAL OPERATING RANGE

LEGENDA

 $P_{1,F}$ $% P_{1,F}$ Fuel pressure upstream the diaphragm $P_{1,A}$ Air pressure upstream the diaphragm

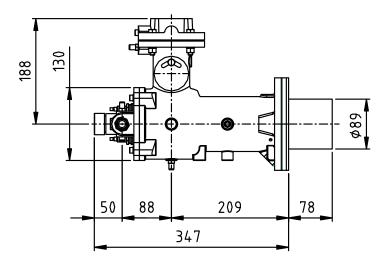
 $P_{2,F}$ Fuel pressure downstream the diaphragm

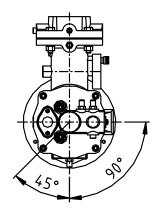
 $\begin{array}{ll} P_{2,A} & \mbox{Air pressure downstream the diaphragm} \\ \Delta P_F & \mbox{Differential fuel pressure between ports 1 and 2} \\ \Delta P_A & \mbox{Differential air pressure between ports 1 and 2} \end{array}$

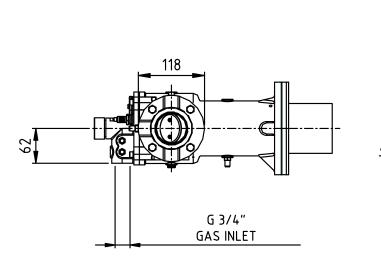

FLOW RATE CURVES

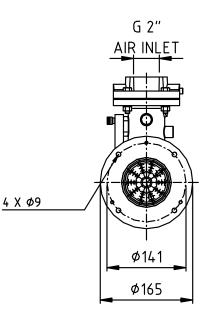
		FUEL				
Q _F [Nm³/h]	P _{1.F} [mbar]		ΔP _F [m	ΔP _F [mbar]		
	Natural gas	LPG	Natural gas	LPG		
0.5	0.03		0.01			
1	0.11		0.02			
2	0.43		0.08			
3	0.97		0.18			
4	1.73		0.32			
5	2.71		0.50			
6	3.90		0.73			
7	5.31		0.99			
8	6.93		1.29			
9	8.77		1.63			
10	10.83		2.01			
11	13.10		2.44			
12	15.59		2.90			
13	18.30		3.40			
14	21.23		3.95			
15	24.37		4.53			
16	27.72		5.16			
17	31.30		5.82			
18	35.09		6.53			
19	39.09		7.27			
20	43.32		8.06			
21	47.76		8.88			
22	52.41		9.75			
23	57.29		10.66			

AIR					
Q _A [Nm³/h]	P _{1.A}	ΔΡΑ			
	[mbar]	[mbar]			
10	0.12	0.02			
20	0.46	0.09			
30	1.04	0.20			
40	1.85	0.36			
50	2.89	0.57			
60	4.17	0.81			
70	5.67	1.11			
80	7.41	1.45			
100	11.58	2.26			
120	16.67	3.26			
140	22.69	4.43			
150	26.05	5.09			
160	29.64	5.79			
180	37.51	7.33			
190	41.80	8.16			
200	46.31	9.05			
210	51.06	9.97			
220	56.04	10.95			
230	61.25	11.96			
240	66.69	13.03			
250	72.37	14.14			
260	78.27	15.29			
270	84.41	16.49			
280	90.78	17.73			

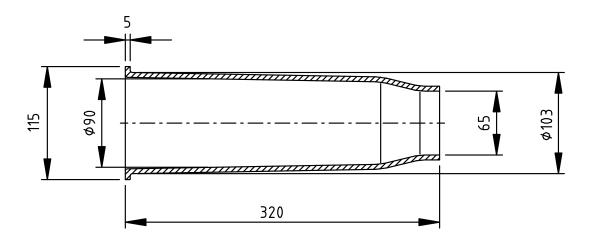







elco

DIMENSIONS [mm]



Silicon carbide burner cone:

