Ecoflam _

HTS 58 S/70.38 SILICON CARBIDE BURNER CONE

HTS 58 S/70 - MV Ø38				
Maximum output [kW]		58		
[
Fuel pressure at maximum capacity [mbar] (measured at $P_{1,F}$ – pag. 2)	Natural gas (8250 kcal/Nm ³)	38		
	LPG (22500 kcal/Nm ³)	27		
Air pressure at maximum capacity [mbar] (measured at $P_{1,A}$ – pag. 2)	Natural gas (8250 kcal/Nm ³)	34		
	LPG (22500 kcal/Nm ³)			
Flame length at maximum capacity [mm] (measured from the end of the burner body)	Natural gas (8250 kcal/Nm ³)	500		
	LPG (22500 kcal/Nm ³)	520		
Flame speed at maximum capacity [m/s] (with 20% excess of air)	Medium speed	90		
Flame detection	Ionization flame detection electrode or UV cell			
Fuel	Natural gas (LPG and other fuel on request)			

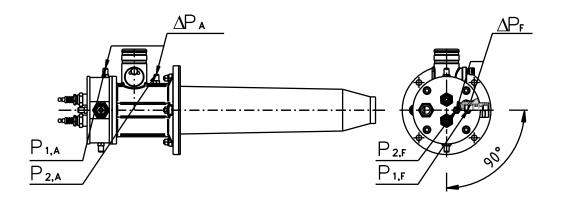
All information is based on laboratory tests in a neutral pressure chamber. Different conditions and chamber sizes can affect the data. All information is based on a standard combustor design. Modifications to the combustor will alter performance and pressures. All data are based on gross calorific values.

All information is based on tests conducted on generally acceptable air and gas piping systems.

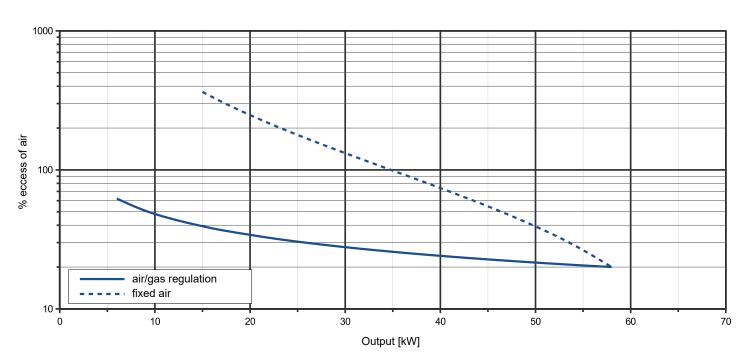
Data reported in this technical sheet are subject to change without notice.

Performance data and dimensions are guidelines only and are not binding.

ECOFLAM reserves the right to modify the construction and / or configuration of its products at any time


CHARACTERISTICS OF THE BURNER

Fuel 1: CH4 Fuel 1 diaphragm: Ø7.25


Fuel 2: LPG Fuel 2 diaphragm: Ø7.25

Comburent: Air Comburent diap.: Gr.19%

Cone: Ø38

OPERATING RANGE

TYPICAL OPERATING RANGE

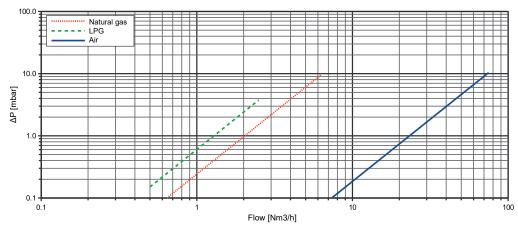
Ecoflam

LEGENDA

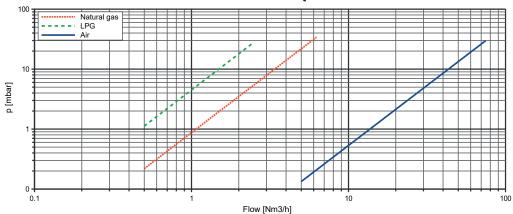
Q_F Fuel flow**Q**_A Air flow

P_{1.A} Air pressure upstream the diaphragm

 $\boldsymbol{P_{2.F}}$ $\,$ Fuel pressure downstream the diaphragm

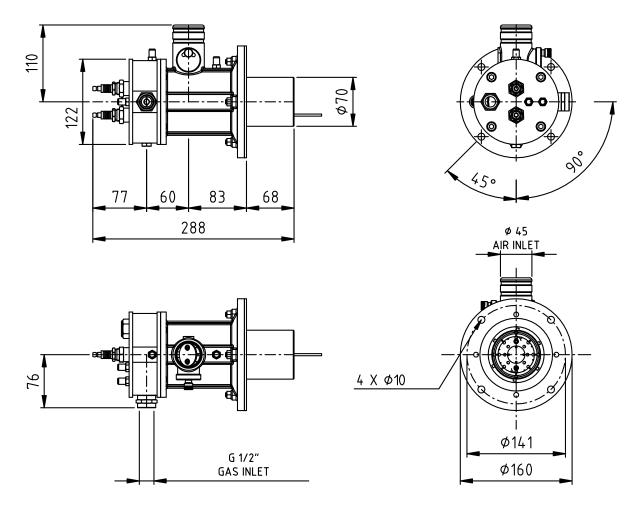

FLOW RATE CURVES

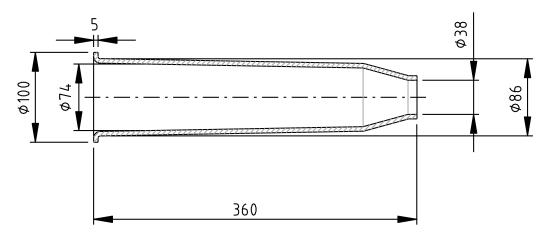
	FUEL						
Q _F [Nm³/h]	P _{1F} [mbar]		∆P _F [mbar]				
	Natural gas	LPG	Natural gas	LPG			
0.5	0.22	1.12	0.06	0.15			
0.75	0.49	2.53	0.14	0.34			
1	0.87	4.49	0.24	0.60			
1.25	1.37	7.02	0.38	0.94			
1.5	1.97	10.11	0.55	1.36			
1.75	2.68	13.76	0.74	1.84			
2	3.49	17.97	0.97	2.41			
2.25	4.42	22.74	1.23	3.05			
2.5	5.46	28.08	1.51	3.77			
2.75	6.61		1.83				
3	7.86		2.18				
3.25	9.23		2.56				
3.5	10.70		2.97				
3.75	12.29		3.41				
4	13.98		3.88				
4.25	15.78		4.38				
4.5	17.69		4.91				
4.75	19.71		5.47				
5	21.84		6.06				
5.25	24.08		6.68				
5.5	26.43		7.33				
5.75	28.89		8.01				
6	31.45		8.72				
6.25	34.13		9.46				


AIR				
Q _A [Nm³/h]	P _{1.A}	ΔΡΑ		
	[mbar]	[mbar]		
5	0.13	0.05		
10	0.53	0.18		
15	1.20	0.42		
20	2.13	0.74		
25	3.33	1.15		
30	4.80	1.66		
32.5	5.63	1.95		
35	6.53	2.26		
37.5	7.50	2.60		
40	8.53	2.96		
42.5	9.63	3.34		
45	10.80	3.74		
47.5	12.03	4.17		
50	13.33	4.62		
52.5	14.70	5.09		
55	16.13	5.59		
57.5	17.63	6.11		
60	19.20	6.65		
62.5	20.83	7.22		
65	22.53	7.80		
67.5	24.30	8.42		
70	26.13	9.05		
72.5	28.03	9.71		
75	30.00	10.39		

 $P_{2A}~$ Air pressure downstream the diaphragm $\Delta P_{F}~$ Differential fuel pressure between ports 1 and 2

 ΔP_{A} $\,$ Differential air pressure between ports 1 and 2 $\,$





Ecoflam

DIMENSIONS [mm]

Silicon carbide burner cone:

