

HTI 105 S/40

STEELE BURNER CONE

HTI 105 S/40 - HV Ø145

Maximum output [kW]		1160
Minimum output (air/gas modulating) [kW]		55
Minimum output (fixed air) [kW]		500
Fuel pressure at maximum capacity [mbar] (measured at P _{1.F} - pag. 2)	Natural gas (8250 kcal/Nm³)	50
	LPG (22500 kcal/Nm³)	
Air pressure at maximum capacity [mbar] (measured at P _{1.A} - pag. 2)	Natural gas (8250 kcal/Nm³)	65
	LPG (22500 kcal/Nm³)	
Flame length at maximum capacity [mm] (measured from the end of the burner body)	Natural gas (8250 kcal/Nm³)	1500
	LPG (22500 kcal/Nm³)	
Flame speed at maximum capacity [m/s] (with 20% excess of air)	High speed	105
Flame detection	Ionization probe or UV cell	
Fuel	Natural gas (LPG and other fuel on request)	

All information is based on laboratory tests in a neutral pressure chamber. Different conditions and chamber sizes can affect the data.

All information is based on a standard combustor design. Modifications to the combustor will alter performance and pressures.

All data are based on gross calorific values.

All information is based on tests conducted on generally acceptable air and gas piping systems.

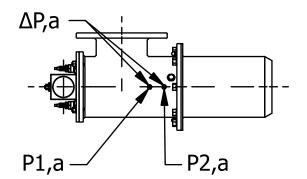
Data reported in this technical sheet are subject to change without notice.

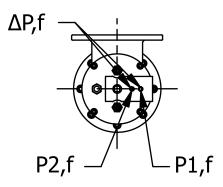
Performance data and dimensions are guidelines only and are not binding.

ELCO reserves the right to modify the construction and / or configuration of its products at any time

CHARACTERISTICS OF THE BURNER

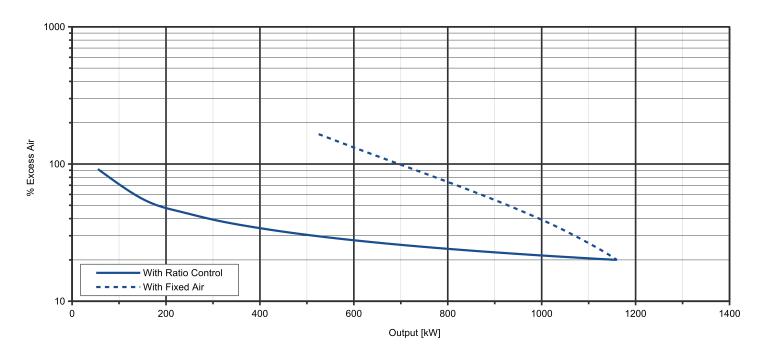
Fuel 1: NG


Fuel 1 diaphragm: Ø30


Fuel 2: LPG

Fuel 2 diaphragm: Ø25

Comburent: Air Comburent orifice: Ø130


Stainless steel cone exit: Ø145

OPERATING RANGE

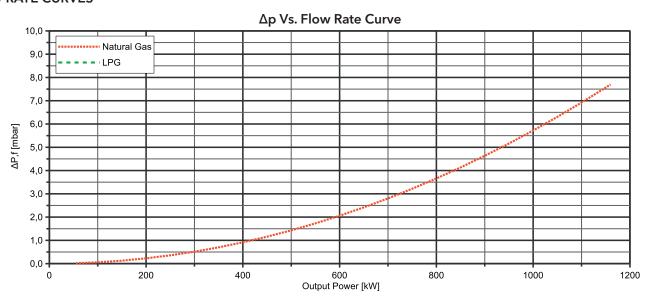
TYPICAL OPERATING RANGE

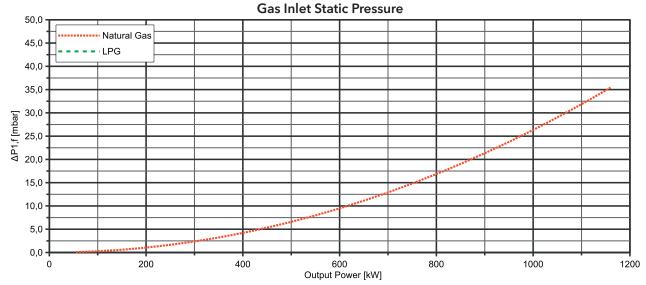
LEGENDA

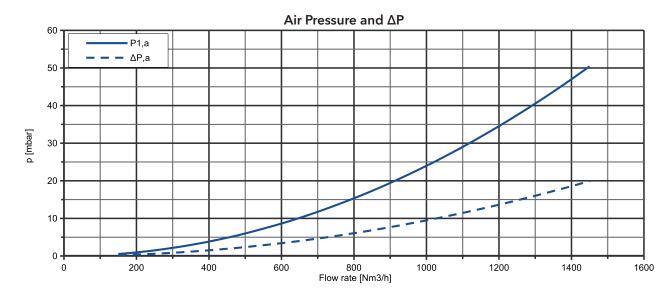
Q_F Fuel flowQ_A Air flow

 $\mathbf{P}_{1.F}$ Fuel pressure upstream the diaphragm

P_{1.A} Air pressure upstream the diaphragm

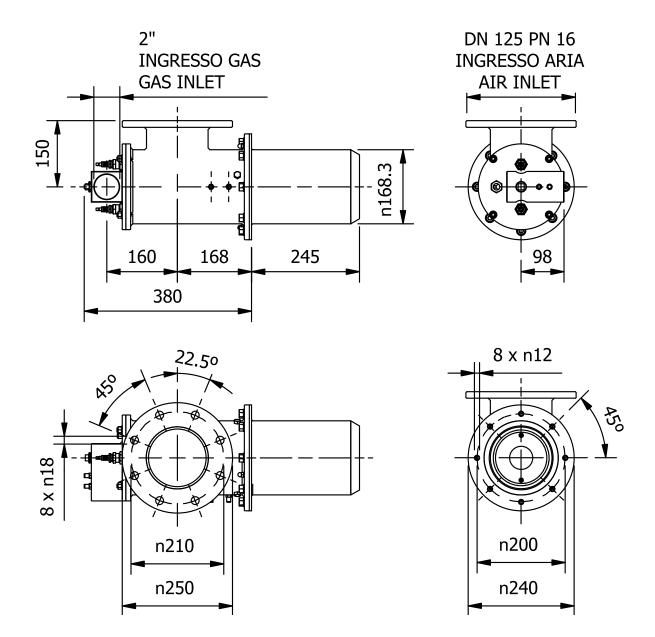

P_{2.F} Fuel pressure downstream the diaphragm


 $P_{2.A}$ Air pressure downstream the diaphragm


 ΔP_F Differential fuel pressure between ports 1 and 2

 ΔP_A Differential air pressure between ports 1 and 2

FLOW RATE CURVES



DIMENSIONS [mm]

